Comparing Methods for Multivariate Nonparametric Regression
نویسندگان
چکیده
منابع مشابه
Multivariate Nonparametric Regression
As in many areas of biostatistics, oncological problems often have multivariate predictors. While assuming a linear additive model is convenient and straightforward, it is often not satisfactory when the relation between the outcome measure and the predictors is either nonlinear or nonadditive. In addition, when the number of predictors becomes (much) larger than the number of independent obser...
متن کاملMultivariate nonparametric regression using lifting
For regularly spaced one-dimensional data wavelet shrinkage has proven to be a compelling method for nonparametric function estimation. We argue that this is not the case for irregularly spaced data in two or higher dimensions. This article develops three methods for the multiscale analysis of irregularly spaced data based on the recently developed lifting paradigm by “lifting one coefficient a...
متن کاملBayesian Nonparametric Modeling for Multivariate Ordinal Regression
Univariate or multivariate ordinal responses are often assumed to arise from a latent continuous parametric distribution, with covariate effects which enter linearly. We introduce a Bayesian nonparametric modeling approach for univariate and multivariate ordinal regression, which is based on mixture modeling for the joint distribution of latent responses and covariates. The modeling framework e...
متن کاملNonparametric Bayesian Regression Methods
A common problem in statistics, and other disciplines , is to approximate adequately a function of several variables. In this paper we review some possible nonparametric Bayesian models with which we can perform this multiple regression problem. We shall also demonstrate how these basic models can be extended to allow the analysis of time series , both conventional and nancial, survival analysi...
متن کاملNonparametric Regression Analysis of Multivariate Longitudinal Data
Multivariate longitudinal data are common in medical, industrial and social science research. However, statistical analysis of such data in the current literature is restricted to linear or parametric modeling, which is inappropriate for applications in which the assumed parametric models are invalid. On the other hand, all existing nonparametric methods for analyzing longitudinal data are for ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Statistics - Simulation and Computation
سال: 2003
ISSN: 0361-0918,1532-4141
DOI: 10.1081/sac-120017506